Converting binary into hexadecimal is very simple. All we need is to remember that hexadecimal is a base 16 number. This means that each number column can contain 16 characters. Hexadecimal goes from 0 to F:
Decimal Number | Binary Number | Hexadecimal Number |
0 | 0000 | 0 |
1 | 0001 | 1 |
2 | 0010 | 2 |
3 | 0011 | 3 |
4 | 0100 | 4 |
5 | 0101 | 5 |
6 | 0110 | 6 |
7 | 0111 | 7 |
8 | 1000 | 8 |
9 | 1001 | 9 |
10 | 1010 | A |
11 | 1011 | B |
12 | 1100 | C |
13 | 1101 | D |
14 | 1110 | E |
15 | 1111 | F |
EG
Using the table – 0111 in binary is 7 in hexadecimal.
Using the table – 1010 in binary is A in hexadecimal.
Binary to 2 Digit Hexadecimal Conversion
In GCSE computer science you will be expected to convert binary into 2 digit hexadecimal. Again we need to remember that hexadecimal is a base 16 number and each number column can go from 0-9 and A-F.
Example 1
Convert Binary number 10100010 into Binary
Split the binary number into a 2 column table in nibbles (4 bits).
1010 | 0010 |
Using the table above and our knowledge of binary, we can now convert the individual binary nibbles into hexadecimal.
1010 | 0010 |
1010 = A | 0010 = 2 |
We now simply combine these 2 hexadecimal digits:
1010 0010 = A2 in hexadecimal
Example 2
Convert binary number 00101000 into hexadecimal
0010 | 1000 |
0010 = 2 | 1000 = 8 |
0010 1000 = 28 in hexadecimal